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The effects of magnetic field and heat source strength on thermal convection of a compres-
sible rotating ferromagnetic fluid through a porous medium are investigated theoretically
using linear stability theory. A normal mode analysis method is employed to find solutions
for the fluid layer confined between parallel planes with free boundaries. The cases of sta-
tionary and oscillatory instabilities are discussed. For the stationary state, compressibility,
medium porosity and temperature gradient due to heat source have destabilizing effects,
whereas rotation and ratio of magnetic permeability delay the onset of convection. The ma-
gnetic field and medium permeability have both stabilizing and destabilizing effects under
certain conditions. The variations in the stationary critical thermal Rayleigh number and
neutral instability curves in (Ra1, x)-plane for various values of physical parameters are
shown graphically to depict the stability characteristics. The sufficient conditions for the
non-existence of overstability are obtained and the principle of exchange of stabilities holds
true in the absence of magnetic field and rotation under certain conditions.
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1. Introduction

Ferrofluids (also known as magnetic fluids) are electrically non-conducting colloidal suspensions
of fine solid ferromagnetic particles or nanoparticles (iron, nickel, cobalt etc.) and their study
opens a wide range of attractive and futuristic applications in various engineering and medi-
cal science purposes like vacuum technology, instrumentation, lubrication mechanism, acoustics
theory, recovery of metals, detection of tumours, drug delivery to a target site, magnetic flu-
id bearings, non-destructive testing, sensors and actuators, sorting of industrial scrap metals.
They also serve as a challenging subject for scientists interested in the basics of fluid mechanics.
The ferromagnetic nanoparticles are coated with a surfactant to prevent their agglomeration.
Rosensweig (1985, 1987) discussed the fundamental concepts related to the use of ferrofluids
and provides a comprehensive and detailed application of ferrohydrodynamics (also known as
FHD) in various commercial usages such as novel zero-leakage rotary shaft seals used in compu-
ter disk drives (Bailey, 1983); semiconductor manufacturing (Moskowitz, 1975); pressure seals
for compressor and blowers (Rosensweig, 1985); tracer of blood flow in non-invasive circulatory
measurements (Newbower, 1972) and in loudspeakers to conduct heat away from the speakers
coil (Hathaway, 1979). The thermal instability problem of ferrofluids is a current topic of frontier
research and also attractive from a theoretical point of view. Thus, the overall field of ferroflu-
id research has a highly interdisciplinary character bringing physicists, engineers, chemists and
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mathematicians together. Finlayson (1970) discussed the convective instability problem of a fer-
romagnetic fluid layer heated from below when under the effect of a uniform vertical magnetic
field with or without considering the effect of body force (gravity force). He quantified that the
magnetization of a ferromagnetic fluid depends upon the magnetic field strength, temperature
gradient and density of fluid, and is known as ferroconvection (which is very similar to Bénard
convection as noted by Chandrasekhar, 1981). Lalas and Carmi (1971) studied a thermoconvec-
tive instability problem of ferrofluids without considering buoyancy effects, whereas the problem
of thermal convection in a ferromagnetic fluid saturating a porous medium under the influence
of rotation and/or suspended dust particles was simulated by Sunil et al. (2005a,b). Copious
literatures (Odenbach, 2002; Neuringer and Rosensweig, 1964; Berkovsky and Bashtovoy, 1996;
Sherman and Sutton, 1962) are available to deal with the hydrodynamic and hydromagnetic
instability problems of ferrofluids and forcing further investigation in the whole research area.
The thermo-convective transport phenomenon in a rotating porous medium is of significant

importance in modern science and engineering problems such as rotating machinery, crystal
growth, food processing engineering, centrifugal filtration processes, biomechanics and in thermal
power plants (to generate electricity by rotation of turbine blades). Magneto-hydrodynamics
(MHD) theory of electrically conducting fluids has several scientific and practical applications
in atmospheric physics, astronomy and astrophysics, space sciences, etc. Magnetic field is also
used in several clinical areas such as neurology and orthopaedics for probing and curing the
internal organs of the body in several diseases like tumours detection, heart and brain diseases,
stroke damage, etc. Aggarwal and Makhija (2014) studied the effect of Hall current on thermal
instability of ferromagnetic fluid in the presence of horizontal magnetic field through a porous
medium. Spiegel and Veronis (1960) simplified the set of equations for compressible fluids by
assuming that the vertical height of the fluid is much smaller than the scale height as defined by
them, and the fluctuations in density, temperature and pressure did not exceed their total static
variations. The thermal instability problem for a compressible fluid in the presence of rotation
and magnetic field was studied by Sharma (1997).
Detailed investigations related with the problem of convection through various porous me-

diums were supplied and very well defined by Nield and Bejan (2006). The fluid flow problems
saturating a porous medium plays a key role in petroleum and chemical industry, geophysical
fluid dynamics, filtering technology, recovery of crude oil from Earth’s interior, etc. Kumar et
al. (2014a,b, 2015) addressed theoretically the thermal instability problems of couple-stress and
ferromagnetic fluids by considering the effects of various parameters such as rotation, suspen-
ded particles, compressibility, heat source and variable gravity through Darcy and/or Brinkman
porous medium. The physical properties of comets, meteorites and interplanetary dust strongly
suggest the importance of porosity in astrophysical situations (McDonnel, 1978). The governing
hydrodynamic equations of motion are solved using a regular perturbation technique. The objec-
tive of the present study is to discuss the influence of rotation, compressibility and heat source
on thermal stability of a ferromagnetic fluid layer heated from below through a porous medium
using linear stability analysis. The understanding of rotating ferrofluid instability problems plays
a key role in microgravity environmental applications. Some existing results are recovered as a
particular case of the present study.

2. Governing equations

Consider an infinite horizontal porous layer saturated with a non-conducting compressible ferro-
magnetic fluid confined between the parallel planes z = 0 and z = d subject to a uniform vertical
magnetic field of intensity H(0, 0,H) and uniform vertical rotation Ω(0, 0, Ω). A Cartesian fra-
me of reference is chosen with the z-axis directed vertically upwards and the x- and y-axes at
the lower boundary plane. It is also assumed that the flow in the porous medium is governed by
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Darcy’s law in the equation of motion with medium porosity ε and permeability k1 for the case
of free and perfect conducting boundaries. The geometrical configuration of the present problem
is shown in Fig. 1.

Fig. 1. Geometrical sketch of the physical problem

The basic governing equations of motion, continuity, energy and Maxwell equations for a
magnetized ferrofluid saturating a homogenous porous medium with constant viscosity under
Boussinesq approximation are given as follows (Finlayson, 1970; Rosensweig, 1985; Sunil et al.,
2005a,b)

ρ

ε

[∂q
∂t
+
1
ε
(q · ∇)q

]
= −∇p+ ρXi + µ0(M · ∇)H−

( µ
k1

)
q+
2ρ
ε
(q×Ω)

+
µe
4π
[(∇×H)×H]

ε
∂ρ

∂t
+∇ · (ρq) = 0

[ερcv + ρscs(1− ε)]
∂T

∂t
+ ρcv(q · ∇)T = kT∇2T + Φ

ε
(∂H
∂t

)
= [∇× (q×H)] + εη(∇2H ∇ ·H = 0

(2.1)

where the symbols ρ, t, µ, q, ∇p, µe, µ0, H, Xi = −gλi, ρs, cs, cv, T , kT , Φ and η denote,
respectively, density of the compressible fluid, time, co-efficient of viscosity, fluid velocity, pres-
sure gradient term, magnetic permeability of the medium, magnetic permeability of vacuum
4π · 10−7H/m (H – Henry), magnetic field intensity, gravitational acceleration term, density of
the solid material, heat capacity of the solid material, specific heat at constant volume, tempe-
rature, effective thermal conductivity, internal heat source strength and electrical resistivity.
The rotational effect induces two terms in the equation of motion, namely, the Centrifugal

force (−0.5 grad |Ω×r|2) and the Coriolis force 2(q×Ω). In Eq. (2.1)1, p = (pf −0.5ρ|Ω×r|2) is
the reduced pressure, where pf stands for the fluid pressure and Ω denotes the angular velocity.
Maxwell’s equations for an electrically non-conducting fluid with no displacement currents

are

∇ ·B = 0 ∇×H = 0 (2.2)

The magnetic induction B, magnetization M and the intensity of magnetic field H are related
by (Penfield and Haus, 1967)

B = µ0(H+M) (2.3)

In general, the magnetizationM of a ferrofluid depends upon the magnitude of magnetic field H
and temperature T , but in the present study it is assumed that the magnetization does not
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depend upon the magnetic field strength and is a function of temperature only. So, the magnetic
equation of state takes the form

M =M0[1 + χ(T0 − T )] (2.4)

where T0 andM0 are the reference temperature and reference magnetization, respectively, with
M0 =M(T0). χ = −(1/M0)(∂M/∂T )H0 stands for the pyromagnetic co-efficient and H0 is the
uniform magnetic field of the fluid layer when placed in an external magnetic fieldH = Hext0 ×λi,
where λi is the unit vector in the vertical direction.
According to Spiegel and Veronis (1960), the equations for compressible fluids are equivalent

to those for incompressible fluids if the static temperature gradient β is replaced by the term
(β − g/cp) and f is defined as any of the state variable (p, ρ, T ) and is expressed in the form

f(x, y, z, t) = fm + f0(z) + f ′(x, y, z, t) (2.5)

where fm is the constant space distribution of f , f0 is the variation in the absence of motion,
f ′(x, y, z, t) stands for the fluctuations in f resulting from motion of the fluid and cp stands for
the specific heat at constant pressure.
The quantities of the basic state are given by

q = qb = [0, 0, 0] p = pb(z) ρ = ρb(z) = ρ0(1 + αβz)

H = Hb(0, 0,Hz) M =Mb(z) β =
T0 − T1

d

T = Tb(z) = T0 −
(
β − g

cp

)
z +

Φ

2κ
(zd− z2) H0 +M0 = Hext0

(2.6)

and

ρ = ρm[1− αm(T − Tm) +Km(p − pm)] αm = −
(1
ρ

∂ρ

∂T

)

m

Km =
(1
ρ

∂ρ

∂p

)

m
p(z) = pm − g

z∫

0

(ρ0 + ρm) dz
(2.7)

where ρ0 and T0 stands for the density and temperature of the fluid at the lower boundary, whe-
reas pm and ρm stand for a constant space distribution of pressure p and density ρ, respectively.
The subscript b denotes the basic state, α is the coefficient of thermal expansion and β denotes
the basic temperature gradient.
Now, to analyze the stability of the basic state using the perturbation technique, infinitesimal

perturbations are assumed around the basic state solutions of the following form

q = qb + q′ p = pb(z) + p′ T = Tb(z) + θ ρ = ρb(z) + ρ′

M =Mb(z) +M′(mx,my,mz) H = Hb + h(hx, hy, hz)
(2.8)

where q′(u, v,w), p′, θ, ρ′, M′, h(hx, hy, hz) are the perturbations in velocity q, pressure p,
temperature T , density ρ, magnetization M and magnetic field intensity H, respectively. The
changes in density and magnetizationM′ caused by perturbation θ in temperature T are defined
as

ρ′ = −αρmθ M′ = −χM0θ (2.9)
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Using equation (2.8) in equations (2.1) and assuming the perturbation quantities to be very
small, the following linearized perturbation equations are obtained as follows

1
ε

(∂q′

∂t

)
= − 1

ρm
(∇p′)− g

( ρ′

ρm

)
λi −

µ0χM0(∇H)θ
ρm

+
µ0(M · ∇)h

ρm
− υ

k1
q′

+
2
ε
(q′ ×Ω) + µe

4πρm
[(∇× h)×H]

∇ · q′ = 0 E
(∂θ
∂t

)
= −

(∂Tb
∂z

)
w + κ(∇2θ)

∇ · h = 0 ε
(∂h
∂t

)
= (∇H)q′ + εη(∇2h)

(2.10)

where E = ε + (1 − ε)[ρscs/(ρmcv)], λi = [0, 0, 1] and w stands for the vertical fluid velocity.
Eliminating u, v and ∇p′ from the momentum equation and retaining the vertical component
of fluid velocity, the following perturbation equations are obtained

1
ε

∂

∂t
(∇2w) =

(
gα − µ0χM0∇H

ρm

]
∇21θ +

µ0M0(1 + χ∆T )
ρm

∇21
(∂hz
∂z

)
− υ

k1
(∇2w)

− 2Ω
ε

(∂ζ
∂z

)
+

µeH

4πρm

[ ∂
∂z
(∇2hz)

]

1
ε

(∂ζ
∂t

)
= − υ

k1
ζ +
2Ω
ε

(∂w
∂z

)
+

µeH

4πρm

(∂ξ
∂z

) (
E
∂

∂t
− κ∇2

)
θ = βLh(z)w

ε
(∂hz
∂t

)
= H

(∂w
∂z

)
+ εη(∇2hz) ε

(∂ξ
∂t

)
= H

(∂ζ
∂z

)
+ εη(∇2ξ)

(2.11)

where ξ = ∂hy
∂x − ∂hx

∂y (z-components of current density), ζ =
∂v
∂x − ∂u

∂y (z-component of vorticity),

∇2 = ∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (three dimensional Laplacian operator), ∇21 =
∂2

∂x2 +
∂2

∂y2 (two dimensional

horizontal Laplacian operator), L = 1 − 1G = 1 −
βcp
g (modified dimensionless compressibility

parameter), S = Φd
2βκL (dimensionless heat source parameter), h(z) = 1−S

(
1− 2zd

)
(non-uniform

temperature gradient) and κ = kT
ρmcv
(thermal diffusivity of the fluid).

3. Normal modes and linear stability analysis

The system of equations (2.11) can be solved by using the method of normal modes in which the
perturbation quantities have solutions with dependence upon x, y and t of the following form

[w, θ, ζ, hz , ξ] = [W (z), Θ(z), Z(z),K(z),X(z)] exp[i(kxx+ kyy) + nt] (3.1)

where kx and ky are the horizontal wave numbers along the x and y directions, respectively,
k2 = k2x + k

2
y is a dimensionless resultant wave number and n is the growth rate of harmonic

disturbance. Infinitesimal perturbations of the state may either grow or damp depending upon
the growth rate n. Substituting expression (3.1) into linearized differential equations (2.11) along
with z = z∗d, a = kd, σ = nd2/υ, D = ∂/∂z∗, the following non-dimensional form is obtained
(after ignoring the asterisk)

(σ
ε
+
1
Pl

)
(D2 − a2)W (z) = −

(
g − µ0χM0∇H

ρmα

)αa2d2Θ
υ

−
[µ0M0(1 + χ∆T )

ρm

a2d

υ
− µeHd

4πρmυ
(D2 − a2)

]
DK − 2Ωd3

ευ
DZ

(3.2)
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and

(σ
ε
+
1
Pl

)
Z =
2Ωd
ευ

DW +
µeHd

4πρmυ
DX [(D2 − a2)− Ep1σ]Θ = −

βd2

κ
Lh(z)W

[(D2 − a2)− p2σ]K = −
Hd

εη
DW [(D2 − a2)− p2σ]X = −

Hd

εη
DZ

(3.3)

The dimensionless parameters in equations (3.2) and (3.3) are the thermal Prandtl number
Pr1 = υ/κ, the magnetic Prandtl number Pr2 = υ/η and the dimensionless medium permeability
Pl = k1/d2.
The boundary conditions appropriate for the case of two free boundaries are defined as
{
W = D2W = DZ = Θ = 0 at z = 0 and z = 1

hx, hy, hz are continuous at the boundaries
(3.4)

The solution to equations (3.2) and (3.3) satisfying boundary conditions (3.4) can be taken in
the form

W =W0 sin(lπz) l = 1, 2, 3, . . . (3.5)

where W0 is a constant. The most suitable mode corresponds to l = 1 (fundamental mode).
Therefore, using solution (3.5) with l = 1 into equations (3.2) and (3.3), the dispersion relation
is obtained as follows (after eliminating Θ, X, Z and K)

(1 + x)(1 + x+ iEPr1σi)(1 + x+ iPr2σi) = Ra1xεPLh(z)
1 + x+ iσiPr2
ε+ iσiP

− PQ1
ε+ iσiP

[xΓ + (1 + x)](1 + x+ iσiEPr1)

− TA1P 2(1 + x+ iσiEPr1)(1 + x+ iσiPr2)2
1

1 + x+ iσiPr2 +Q1P

(3.6)

where RaF is the thermal Rayleigh number for ferromagnetic fluids, Q – Chandrasekhar num-
ber, QM – modified Chandrasekhar number for ferromagnetic fluids, Γ – ratio of magnetic
permeability with magnetization to magnetic strength and TA – Taylor number

RaF =
(
g − µ0χM0∇H

ρmα

)αβd4

υκ
Q =

µeH
2d2

4πρmυη
QM =

µ0M0(1 + χ∆T )
ρm

Hd2

υη

Γ =
QM1
QM
=
4πµ0M
µeH

TA =
4Ω2d4

υ2

and

Ra1 =
RaF
π4

x =
a2

π2
iσi =

σ

π2
P = π2Pl

Q1 =
Q

π2
QM1 =

QM
π2

TA1 =
TA
π4

Equation (3.6) is the required dispersion relationship that accounts for the effects of rotation,
medium permeability, medium porosity, compressibility, uniform heat source and magnetic field
on thermal instability of the ferromagnetic fluid in a porous medium.
From equation (3.6), the thermal Rayleigh number Ra1 can be separated into the real and

imaginary parts as

Ra1 = X1 + iσiX2 (3.7)
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where X1, X2 and σi are real numbers defined as

X1 =
1

xεPLh(z)

(
[(1 + x)2ε− σ2i PPr1E(1 + x)]

+
PQ1[xΓ + (1 + x)][(1 + x)2 + σ2iPr1Pr2E]

(1 + x)2 + σ2i Pr
2
2

+
TA1P

2

[(1 + x) +Q1P ]2 + σ2iPr
2
2

{
[(1 + x)2 − σ2i Pr1Pr2E][(1 + x+Q1P )ε+ σ2i PPr2]

− σ2i [(1 + x)(Pr2 +Pr1E)][(1 + x)P +Q1P 2 − Pr2ε]
})

X2 =
1

xεPLh(z)

(
[(1 + x)2P + Pr1Eε(1 + x)] +

PQ1[xΓ + (1 + x)](1 + x)(Pr1E − Pr2)
(1 + x)2 + σ2i Pr

2
2

+
TA1P

2

[(1 + x) +Q1P ]2 + σ2iPr
2
2

{
[(1 + x)2 − σ2i Pr1Pr2E][(1 + x+Q1P )P − Pr2ε]

+ [(1 + x+Q1P )ε+ σ2i PPr2](1 + x)(Pr2 + Pr1E)
})

(3.8)

Since Ra1 is a physical quantity, it must be real. Hence, from equation (3.7) it follows that either
σi = 0 (stationary state) or X2 = 0, σi 6= 0 (oscillatory state). It should also be noted that when
µ0 = 0 (i.e. Γ = 0) then from equation (3.8)2 X2 cannot vanish and therefore, σi must be zero.
This implies that for an ordinary viscous fluid, the principle of exchange of stabilities is valid
even in the presence of a porous medium, and this statement is verified in Section 6.

3.1. The stationary state

For real σi, the marginal instability (or neutral instability) occurs when σi = 0. Substituting
σi = 0 into equations (3.7) and (3.8)1, the modified thermal Rayleigh number is obtained for
the onset of stationary convection in the following form

Rastat1 =
1

xεPLh(z)

{
(1 + x)2ε+ PQ1[xΓ + (1 + x)] + TA1P

2 (1 + x)2ε
Q1P + (1 + x)

}
(3.9)

Equation (3.9) leads to the marginal instability curves in stationary conditions.
For higher values of permeability (P → ∞) which correspond to the case of pure fluids,

equation (3.9) gives

Rastat1 =
1

Lh(z)

{Q1[xΓ + (1 + x)]
εx

+
TA1(1 + x)

2

Q1x

}
(3.10)

Minimizing equation (3.9) with respect to x yields an equation of degree four in x as

x4 +A1x3 +A2x2 +A3x+A4 = 0 (3.11)

where

A1 = 2(1 +Q1P )

A2 = Q21P
2 + 2Q1P −

Q1P

ε
+ TA1Q1P

3 − TA1P 2

A3 = −
[
2(1 +Q1P ) + 2TA1P

2 +
2Q1P (1 +Q1P )

ε

]

A4 = −1 +Q21P 2 + 2Q1P −
Q1P

ε
− TA1Q1P 3 − TA1P 2 −

(Q21P
2 + 2Q1P )Q1P

ε
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In the absence of heat source parameter (i.e. h(z) = 1), equation (3.9) gives

Rastat1 =
1

xεPL

{
(1 + x)2ε+ PQ1[xΓ + (1 + x)] + TA1P

2 (1 + x)2ε
Q1P + (1 + x)

}
(3.12)

which agrees with the previous published work by Aggarwal and Makhija (2014) in the absence
of the Hall effect but in the presence of rotation and compressibility.
The classical results for Newtonian fluids can be obtained as a particular case of the present

study.
For an incompressible (L = 1), non-rotatory and non-magnetized system, equation (3.12)

reduces to

Rastat1 =
(1 + x)2

Px
(3.13)

This coincides with the classical Rayleigh-Bénard result for a Newtonian fluid in a porous me-
dium.
To analyze the effects of various parameters such as modified compressibility, medium poro-

sity, temperature gradient due to internal heating, rotation, magnetic field and medium perme-
ability, the behaviour of dRastat1 /dL, dRastat1 /dε, dRastat1 /dh(z), dRastat1 /dTA1 , dRa

stat
1 /dQ1 and

dRastat1 /dP is examined analytically.
Differentiating equation (3.9) with respect to various parameters, i.e. L, ε, h(z), TA1 , Q1, P ,

leads to following expressions

dRastat1
dL

= − R⊕

L2h(z)
dRastat1
dε

= − 1
Lh(z)

{ [xΓ + (1 + x)]Q1
ε2x

}

dRastat1
dh(z)

=





1
L(1− S)2R

⊕ at z = 0

− 1
L(1 + S)2

R⊕ at z = d

(3.14)

This shows that the modified compressibility, medium porosity and temperature gradient (except
for the lower boundary) have a destabilizing effect

dRastat1
dTA1

=
1

Lh(z)

{ P (1 + x)2

x[Q1P + (1 + x)]

}
(3.15)

which is positive, thereby implying the stabilizing effect of the rotational parameter

dRastat1
dQ1

=
1

Lh(z)

{xΓ + (1 + x)
εx

− TA1P
2(1 + x)2

x[Q1P + (1 + x)]2
}

dRastat1
dP

=
1

Lh(z)

{ TA1(1 + x)
2

x[Q1P + (1 + x)]
− PQTA1(1 + x)

2

x[Q1P + (1 + x)]2
− (1 + x)

2

P 2x

} (3.16)

Equations (3.16) show that the magnetic field and medium permeability have dual effects. In
a non-rotating frame, the magnetic field has a stabilizing effect, whereas permeability has a
destabilizing effect where

R⊕ =
(1 + x)2

Px
+
[xΓ + (1 + x)]Q1

εx
+

TA1P (1 + x)
2

x[Q1P + (1 + x)]



Linear stability analysis for ferromagnetic fluids... 1075

3.2. The oscillatory state

For an oscillatory state, setting X2 = 0, σi 6= 0 in equation (3.8)2 gives a polynomial in σ2i
of degree two in the form

a0σ
4
i + a1σ

2
i + a2 = 0 (3.17)

Solving equation (3.17) for σ2i , one gets

σ2i =
−a1 ±

√
a21 − 4a0a2
2a0

(3.18)

For simplicity, the values of coefficients a0, a1 and a2 are not mentioned here to save spaces.

With σ2i determined from equation (3.18), the Rayleigh number for an oscillatory instability
can be obtained with the help of equations (3.7) and (3.8)1 as

Raosc1 =
1

xεPLh(z)

(
(1 + x)2ε− σ2i PPr1E(1 + x)

+
PQ1[xΓ + (1 + x)][(1 + x)2 + σ2iPr1Pr2E]

(1 + x)2 + σ2i Pr
2
2

+
TA1P

2

[(1 + x) +Q1P ]2 + σ2iPr
2
2

{
[(1 + x)2 − σ2i Pr1Pr2E

]
[(1 + x+Q1P )ε+ σ2i PPr2]

− σ2i (1 + x)(Pr2 + Pr1E)[(1 + x)P +Q1P 2 − Pr2ε]
})

(3.19)

The values of the critical wave number xc for the oscillatory case can be obtained from equation
(3.19) with the condition dRaosc1 /dx = 0 and then substituting this critical wave number xc into
equation (3.19) yields the critical Rayleigh number Raosc1c for the oscillatory instability. Further,
substituting these critical wave number and the critical Rayleigh number of oscillatory instability
into equation (3.18) gives the critical frequency for the oscillatory case.

4. Results and discussion

In the present Section, we mainly focused on the determination of critical wave numbers and
critical thermal Rayleigh numbers for the stationary case. The values of the critical wave num-
ber xc for the onset of stationary instability are determined numerically from equation (3.11)
with the condition dRastat1 /dx = 0, and then equation (3.9) will give the critical thermal Rayle-
igh number for the stationary state. The variations in critical thermal Rayleigh numbers Rastat1c
for various values of physical parameters are depicted graphically in Fig. 2. Also, the variations
of marginal (neutral) instability curves in the (Ra1 − x) plane for different parametric values
(L, h(z), ε, TA1 , Q1, P ) are shown in Fig. 3. We fixed the values of the parameters except for the
varying parameter.



1076 K. Kumar et al.

Fig. 2. Variation of Ra1c verrsus L (a), TA1 (b), Q1 (c), P (d), ε (e), h(z) (f)various valuesof physical
parameters; curve 1: Q1 = 0, QM1 = 1, ε = 1, P = 1, h(z) = 5, L = 5, TA1 = 0, curve 2: Q1 = 1,

QM1 = 3, ε = 2, P = 2, h(z) = 10, L = 10, TA1 = 2, curve 3: Q1 = 3, QM1 = 5, ε = 3, P = 3, h(z) = 15,
L = 15, TA1 = 4, curve 4: Q1 = 5, QM1 = 7, ε = 4, P = 4, h(z) = 20, L = 20, TA1 = 6, curve 5: Q1 = 7,

QM1 = 9, ε = 5, P = 5, h(z) = 25, L = 25, TA1 = 8
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Fig. 3. Neural instability curve for different values of: (a) comprssibility parameter, h(z) = 5, P = 5,
ε = 5, Q1 = 10, QM1 = 10, TA1 = 500; (b) temperature gradient, L = 10, P = 2, ε = 3, Q1 = 10,
QM1 = 10, TA1 = 500; (c) porosity, L = 5, h(z) = 5, P = 2, Q1 = 20, QM1 = 20, TA1 = 1000;

(d) rotation parameter, L = 3, h(z) = 3, P = 3, ε = 2, Q1 = 50, QM1 = 50; (e) permeability, L = 2,
h(z) = 2, P = 5, ε = 3, Q1 = 10, QM1 = 10, TA1 = 50; (f) magnetic field parameter, L = 5, h(z) = 5,

P = 5, ε = 5, QM1 = 5, TA1 = 50
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5. The overstable case

Now, the possibility whether the instability may occur as overstability is examined. Equating
the real and imaginary parts of equation (3.6) leads to

[(1 + x)2 − σ2iEPr1Pr2](1 + x) = Ra1xεPLh(z)
(1 + x)ε+ σ2i PPr2

ε2 + σ2i P 2

− P [(1 + x)ε+ σ2i Pr1PE]
(1 + x)Q1 +QM1x

ε2 + σ2i P 2

− TA1P 2
{
[(1 + x)2 + σ2i Pr2(Pr2 − Pr1E)](1 + x)2

+ [(1 + x)2 − σ2i Pr2(Pr2 + 2Pr1E)]Q1P (1 + x)− σ4iEPr1Pr32
}

σi(Pr2 + Pr1E)(1 + x)2 = Ra1xεPLh(z)
σi[Pr2ε− P (1 + x)]

ε2 + σ2i P 2

− σiP [Pr1Eε− P (1 + x)][(1 + x)Q1 +QM1x]
ε2 + σ2i P 2

− TA1P 2σi
[
(Pr2 +Pr1E)(1 + x)3

+Q1P (2Pr2 + Pr1E)(1 + x)2 + σ2i Pr
2
2(Pr2 + Pr1E)(1 + x)− σ2iPr1Pr22Q1PE

]

(5.1)

Eliminating Ra1 between equations (5.1) and assuming σ2i = y, a four degree polynomial in y is
obtained as follows

b0y
4 + b1y3 + b2y2 + b3y + b4 = 0 (5.2)

where

b0 = TA1P
6Pr32[PPr2(1 + x)− Pr1E(Pr2ε+Q1P 2)]

b4 = TA1P
3ε4(1 + x)5 + [Pε4 + TA1P

2ε4(Pr1Eε+Q1P 2)](1 + x)4

+ [Pr1Eε5 + TA1Q1P
3ε5(Pr1E + Pr2)](1 + x)3 + [Q1Pε4(Pr1E − Pr2)](1 + x)2

+ [QM1Pε
4x(Pr1E − Pr2)](1 + x)

(5.3)

The coefficients b1, b2 and b3 involving the large number of terms are not written here as they
do not play any role in determining the overstability. Since σi is real for overstability to occur,
therefore all the roots of y should be positive. So, from equation (5.2), the product of roots
equals b4/b0 must be positive. b0 is negative if

PPr2(1 + x) < Pr1E(Pr2ε+Q1P 2) i.e. Pκ(1 + x) < ηE(Pr2ε+Q1P 2) (5.4)

and b4 is positive if

Pr1E > Pr2 i.e. ηE > κ (5.5)

Thus, for inequalities (5.4) and (5.5), the overstability cannot occur and the principle of exchange
of stabilities holds true. Therefore, the aforementioned inequalities are the sufficient conditions
for the non-existence of overstability, violation of which does not necessarily imply the occurrence
of overstability.

6. Principal of exchange of stabilities and oscillatory modes

Here, the conditions have been derived, if any, under which the principle of exchange of stabilities
is satisfied and the possibility of oscillatory modes for the ferromagnetic fluid takes place. For this
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purpose, equation (3.2) is multiplied by W ∗ (the complex conjugate of W ) and then integrated
over the range of z using equations (3.3). With the help of boundary conditions (3.4), it gives

(σ
ε
+
1
Pl

)
I1 −

(
g − µ0χM0∇H

ρmα

) καa2

βυLh(z)
(I2 + EPr1σ∗I3)

+
µ0M0(1 + χ∆T )

ρm

a2ε

Pr2H
(I4 + Pr2σ∗I5)

+
µeε

4πρmPr2
(I6 + Pr2σ∗I4) + d2

[(σ∗

ε
+
1
Pl

)
I7 +

µeε

4πρmPr2
(I8 + Pr2σ∗I9)

]
= 0

(6.1)

where the integrals I1-I9 are positive definite and defined as

I1 =
1∫

0

(|DW |2 + a2|W |2) dz I2 =
1∫

0

(|DΘ|2 + a2|Θ|2) dz I3 =
1∫

0

(|Θ|2) dz

I4 =
1∫

0

(|DK|2 + a2|K|2) dz I5 =
1∫

0

|K|2 dz

I6 =
1∫

0

(|D2K|2 + a4|K|2 + 2a2|DK|2) dz I7 =
1∫

0

(|Z|2) dz

I8 =
1∫

0

(|DX|2 + a2|X|2) dz I9 =
1∫

0

(|X|2) dz

(6.2)

Putting σ = iσi in equation (6.1) and equating the imaginary part leads to

σi

[
I1
ε
+
(
g − µ0χM0∇H

ρmα

) καa2

βυLh(z)
Pr1EI3 −

µ0M0(1 + χ∆T )
ρm

a2ε

Pr2H
Pr2I5

− µeεPr2I4
4πρmPr2

− d2I7
ε
+
µeεd

2Pr2I9
4πρmPr2

]
= 0

(6.3)

From equation (6.3), it is concluded that either σi = 0 or σi 6= 0, i.e. the modes may be
non-oscillatory or oscillatory, respectively.
For a non-magneto-rotatory system (i.e. I4 = I5 = I7 = 0), equation (6.2) reduces to

σi
[I1
ε
+
(
g − µ0χM0∇H

ρmα

) καa2

βυLh(z)
Pr1EI3

]
= 0 (6.4)

It is obvious from equation (6.4) that if g > µ0χM0∇H/(ρmα) then the term inside the square
bracket will surely be positive, which leads to σi = 0. Therefore, the modes are non-oscillatory
and the principle of exchange of stabilities is satisfied. The oscillatory modes are introduced due
to the presence of magnetic field and rotation. Thus the sufficient condition for the oscillatory
modes to appear in the system is that the inequality g < µ0χM0∇H/(ρmα) is satisfied.
Further, for an ordinary viscous fluid µ0 = 0 (i.e. Γ = 0), equation (6.3) reduces to

σi
[I1
ε
+

gκαa2

βυLh(z)
Pr1EI3

]
= 0 (6.5)

which implies that σi = 0 and the principles of exchange of stabilities is found to hold good.
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7. Conclusions

In this study, linear stability theory is used to find the critical Rayleigh number for the onset of
both stationary and oscillatory thermal instabilities. The effects of various embedded parameters
(rotation, magnetic field, compressibility, heat source, permeability and porosity) on thermal
instability of a ferrofluid have been analyzed for the stationary state. The main conclusions
drawn are presented as:

• For the case of stationary convection, compressibility, medium porosity and temperature
gradient due to heat source (except at the lower boundary) accelerate the onset of convec-
tion, whereas rotation and ratio of magnetic permeability delay the onset of convection.
The magnetic field and medium permeability have dual effects on thermal instability of
the system, whereas in the absence of rotation, the stabilizing effect of the magnetic field
and the destabilizing effect of the medium permeability is obvious from equations (3.16).

• The conditions Pκ(1 + x) < ηE(Pr2ε + Q1P 2) and ηE > κ are the sufficient conditions
for the non-existence of overstability. The principle of exchange of stabilities holds good
for an ordinary viscous fluid and also in the absence of magnetic field and rotation for
g > µ0χM0∇H/(ρmα). Hence, the oscillatory modes are due to the presence of magnetic
field and rotation only.

• Finally, from the present study, it is concluded that the compressibility, porosity, perme-
ability, rotation, magnetic field and heat source parameter have profound effects on the
onset of ferroconvection saturating a porous medium. The present work will also be useful
for understanding more complex problems under different physical parameters mentioned
above, and it is also possible to suppress the convective instability in a ferromagnetic fluid
layer by controlling the magnitude of heat source, compressibility and medium porosity.
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